

Counting

Learning how to count...again

- Combinatorics The study of the arrangement of objects
- Enumeration Counting of objects with certain properties
- First came up in the study of gambling in the 1600s
- Counting objects can be used to solve many problems:
 - How complex is this algorithm?
 - How many telephone numbers needed for a given population?
 - How many IP addresses do we need for a given region?
 - How complex does a password need to be?
 - DNA sequencing

shutterstock.com · 1444320755

Tips

- · Play with the problem.
- Try a different approach.
- There is usually more than one way to arrive at the same solution.
- Do as many problems as you can. Try all the additional exercises.

Two basic counting principles

• Product Rule

• Sum Rule

Product Rule

Product Rule – **both-and**

- · Applies when a procedure is made up of multiple different tasks and each task must be completed.
- If there are n_1 ways to do the first task and n_2 ways to do the second task, then there are n_1n_2 ways to do the procedure.

How many bitstrings of length 7? (0000000 to 1111111)

$$\frac{1 \text{ or } 0}{2 + 2} = \frac{1}{2} =$$

How many passwords of length 8? (Including uppercase, lowercase, digits)

$$(26 + 26 + 10)^8 = 218340105584896$$

Product Rule - Example

Let's play musical chairs?

Suppose we have a function assigning 4 students to 8 possible seats.

Is this function One-to-one? Onto?

How many ways to assign the seats?

Ann: 8 ways to assign a seat

Bob: 7 remaining ways to assign a seat

Carl: 6 remaining ways to assign a seat

Deb: 5 remaining ways to assign a seat

8*7*6*5 = 1680

How many?

How many possible bit strings of 8 bits?

$$2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 2^8 = 256$$

How many colors can be represented using rgb, where r, g, and b values are each represented with 8 bits?

$$256 * 256 * 256 = 256^3 = 16,777,216$$

How many colors with rgba?

$$256^4 = 4,294,967,296$$

4 blocks of 8 bits each is 32 bits. $2^{32} = 4,294,967,296$

How many functions?

How many possible different functions map from a set with three elements to a set with five elements?

$$5 * 5 * 5 = 5^3 = 125$$

How many different **one-to-one** functions?

$$5 * 4 * 3 = 60$$

How many different **onto** functions?

None, there are only three elements in the domain but five in the codomain.

range ≠ codomain

Sum Rule

Sum Rule – either-or

• If a task can be done in **either** n_1 **or** n_2 ways, where none of the n_1 ways overlaps with the n_2 ways, then there are $n_1 + n_2$ ways to do the task.

Examples:

How many ways to choose one letter if there are 5 vowels and 21 consonants?

5 + 21 = 26 (Choose one vowel OR one consonant)

How many ways to choose one vowel AND one consonant?

Suppose you can choose a final project from one of three lists. The first list contains 10 different projects, the second list contains 12 different projects, and the third list contains 5 different projects. How many possible projects are there to choose from?

$$10 + 12 + 5 = 27$$

Practice

How many possible license plates are there given the following constraints:

Each character can be a capital letter or a digit except for 0 and 1.

Must have 7 characters.

Must begin with a letter.

Examples:

M239ABC AD8Y7D4 Q893262

$$26 * 34 * 34 * 34 * 34 * 34 * 34 * 34 = 26 * 34^6 = 40,164,914,816$$

r-Permutations vs r-Combinations (Subsets)

n: Number of things to choose from

r: How many things to choose

Order matters

$$P(n,r) = \frac{n!}{(n-r)!}$$

Think sequence or arrangement

Order does not matter

$$C(n,r) = \binom{n}{r} = \frac{n!}{r! (n-r)!}$$

"n choose r"

Think sets

r-Permutations

Order matters

Example:

How many ways can we select three students to stand in line for a picture from a group of five students?

r-Permutations

Let's come up with a formula:

$$S = \{a, b, c, d, e\}$$

How many ways can we choose *r* students from *S* to **stand in line**?

$$n = 5, r = ?$$

Choose 3:

$$P(5,3) = 5 * 4 * 3 = 60$$

$$\frac{5*4*3*2*1}{2*1} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{120}{2} = 60$$

Choose 2:

$$P(5,2) = 5 * 4 = 20$$

$$\frac{5*4*8*2*1}{8*2*1} = \frac{120}{6} = 20$$

$$P(n,r) = \frac{n!}{(n-r)!}$$

r-Combinations (AKA Choosing AKA Subsets)

Order does not matter

Example:

There are 4 students at a table. We need to form a party planning committee of three students from that table. How many different possible committees are there?

{ann, bob, carl, deb}

 $\{bob, carl, deb\}, \{ann, carl, deb\}, \{ann, bob, deb\}, \{ann, bob, carl\}$

Combinations

$$S = \{a, b, c, d, e\}$$

Try listing out all the possible subsets with three elements. How many are there?

$$\{a,b,c\}$$
 $\{b,c,d\}$ $\{c,d,e\}$ There are 10
 $\{a,b,d\}$ $\{b,c,e\}$
 $\{a,b,e\}$ $\{b,d,e\}$ $n=5$
 $\{a,c,d\}$
 $\{a,c,e\}$ $C(5,3) = \frac{5!}{3!2!} = \frac{120}{12} = 10$

$$C(n,r) = \binom{n}{r} = \frac{n!}{r! (n-r)!}$$

"n choose r"

A group of 30 people have been trained as astronauts for the first mission to Mars. How many ways are there to select a crew of 6 people (assuming all 30 people are interchangeable)?

$$\binom{n}{r} = \frac{n!}{r! (n-r)!}$$

This is the same thing as the number of subsets of 6 elements from a set of 30 elements. Since order does not matter, we use Combinations.

$$\binom{n}{k}$$

$$C(30,6) = \binom{30}{6} = \frac{30!}{6! \ 24!} = \frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 593,775$$

Jury Duty Time!

Imagine it is determined that the ideal jury consists of 5 men and 7 women. There are 18 men and 16 women in the jury pool.

How many possible juries are there?

$$\binom{m}{r}\binom{w}{s}$$
 $\binom{18}{5}\binom{16}{7}$

$$\binom{18}{5}\binom{16}{7}$$

98,017,920

$$\frac{18!}{5! \, 13!} = \frac{18 * 17 * 16 * 15 * 14}{5 * 4 * 3 * 2 * 1} = 8568$$

$$\frac{16!}{7! \, 9!} = \frac{16 * 15 * 14 * 13 * 12 * 11 * 10}{7 * 6 * 5 * 4 * 3 * 2 * 1} = 11440$$

Additional Exercises:

10.3.1

10.3.2

10.3.3

10.3.4

10.4.2

10.4.3

10.5.1

10.5.2

10.5.3

Dealing with large factorials

$$\frac{33!}{30! \, 3!} = \frac{33 * 32 * 31 * 30!}{30! * 3!} = \frac{11}{33 * 32 * 31} = 11 * 16 * 31 = 5456$$

Much simpler!