
Euclidean Algorithm



Prime Number Theorem
There are an infinite number of primes

The Prime Number Theorem:

 Helps us estimate how many prime numbers are in the range 2 through x.

We define 𝜋𝜋 𝑥𝑥  as the number of primes from 2 to 𝑥𝑥. 

Then, 

The ratio of prime numbers between 2 and x to all numbers between 2 and x approaches 1/ln x as x 
approaches infinity.
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Prime Number Theorem
The ratio of primes to all numbers is approximately 1/ln(𝑥𝑥). 

𝜋𝜋(𝑥𝑥)
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ln(𝑥𝑥)

As 𝑥𝑥 gets larger, the ratio gets smaller.

In other words, primes become more sparse the larger the range.

If we choose a random number between 2 and 𝑥𝑥, the likelihood that it is 
prime is 1/ln(𝑥𝑥). 

The number of primes in the range 2 through 𝑥𝑥 is approximately 𝜋𝜋 𝑥𝑥 ≈
𝑥𝑥

ln(𝑥𝑥)

Example:
How many primes are there 
between 2 and 1000? 

𝑥𝑥
ln 𝑥𝑥

=
1000

ln(1000)
≈ 145

In Python, ln(𝑥𝑥) is math.log(x) Python demo

https://colab.research.google.com/github/byui-cse/cse280-course-notebooks/blob/main/examples/examples-w09-primes.ipynb


Greatest Common Divisor (GCD)
• Greatest Common Divisor – Largest integer that divides both numbers (i.e., the largest factor of both 

numbers)

What is the GCD of 24 and 36?

 Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
 Factors of 36: 1, 2, 3, 4, 9, 12, 18, 36

What is the GCD of 6 and 32?
 
 Factors of 6: 1, 2, 3, 6
 Factors of 32: 1, 2, 4, 8, 16, 32

Rosen, Kenneth. Discrete Mathematics and Its Applications, 7th Edition. McGraw-Hill, 2012

Using Prime Factorizations:

Smallest exponents:  2231 = 12

24: 2331 
36: 2232 

Using Prime Factorizations:

Smallest exponents:  2130 = 2

6: 2131
32: 2530



Example:

 

GCD Theorem
Computing GCD of two integers is computationally difficult for large numbers. Why? 

Finding the prime factorization of a large number is difficult. We only know how to do it 
using brute force.

We have a shortcut!

We can reduce the problem of finding the GCD of large numbers by using mod.

Let 𝑥𝑥 and 𝑦𝑦 be two positive integers where 𝑥𝑥 ≠ 0. 

Then 𝐠𝐠𝐠𝐠𝐠𝐠 𝒙𝒙,𝒚𝒚 = 𝐠𝐠𝐠𝐠𝐠𝐠(𝒙𝒙,𝒚𝒚 𝐦𝐦𝐦𝐦𝐠𝐠 𝒙𝒙). 

In other words, the GCD of two integers is the 
same if we reduce one of those numbers using 
mod of the other number.

And we can keep going until one of the numbers is 
reduced to 0.

gcd 6, 32 = 𝟐𝟐 
gcd 6, 32 mod 6 = gcd 6, 2 = 𝟐𝟐 

gcd 6 mod 2, 2 = gcd 0, 2 = 𝟐𝟐 



Recall the Division Theorem
• Dividing an integer by a positive integer produces a quotient 𝑞𝑞 and remainder 𝑟𝑟.

• Let 𝑛𝑛 and 𝑑𝑑 be integers. 

• Then there exist unique integers 𝑞𝑞 and 𝑟𝑟 where 0 ≤ 𝑟𝑟 < 𝑑𝑑 such that 𝒏𝒏 = 𝒒𝒒𝒒𝒒 + 𝒓𝒓



Euclidean GCD Algorithm

Find the GCD of two numbers:

Using 𝑛𝑛 = 𝑞𝑞𝑑𝑑 + 𝑟𝑟.

1. Divide larger number 𝑛𝑛 by smaller 
number 𝑑𝑑 to get 𝑞𝑞 and 𝑟𝑟.

2. Shift 𝑑𝑑 and 𝑟𝑟 to be the new 𝑛𝑛 and 𝑑𝑑.

3. Divide 𝑛𝑛 by 𝑑𝑑 to get a new 𝑞𝑞 and 𝑟𝑟.

4. Repeat until the remainder is 0. The last 
non-zero remainder is the GCD.

Find gcd(97,11)

1. 97 = (8)11 + 9 

2. 11 = (1)9 + 2 

3. 9 = (4)2 + 1 

4. 2 = 2 1 + 0 

Find gcd(97,11)



• Find the gcd(91, 287)

Find gcd(97,11)

1. 97 = (8)11 + 9 

2. 11 = (1)9 + 2 

3. 9 = (4)2 + 1 

4. 2 = 2 1 + 0 



• Find gcd(21, 56)



Extended Euclidean Algorithm
The GCD of x and y can be expressed as a linear combination of x and y:

gcd 𝑥𝑥, 𝑦𝑦 = 𝑠𝑠𝑥𝑥 + 𝑡𝑡𝑦𝑦 for some 𝑠𝑠 and 𝑡𝑡.  By the GCD Theorem, gcd 𝑥𝑥, 𝑦𝑦 = gcd 𝑥𝑥, 𝑦𝑦 mod 𝑥𝑥 .

 gcd 44, 38 = gcd 44 mod 38, 38 = gcd 6, 38 = gcd 38 mod 6, 6 = gcd 2, 6 = gcd 6 mod 2, 2 = gcd 0,2 = 2 

gcd 44, 38 = 2. We can express this as a linear combination, 2 = 𝑠𝑠 ⋅ 44 + 𝑡𝑡 ⋅ 38.
2 = 38 mod 6 = 38 − ⋅ 6 = 38 − 6 ⋅ 6 
2 = 38 − 6 ⋅ 6 

6 = 44 mod 38 = 44 − ⋅ 38 = 44 − 1 ⋅ 38 
6 = 44 − 1 ⋅ 38 

2 = 38 − 6 ⋅ (44 − 1 ⋅ 38)       substitute (44 − 1 ⋅ 38) for 6
2 = 38 − 6 ⋅ 44 + 6 ⋅ 38           simplify
2 = −6 ⋅ 44 + 7 ⋅ 38                We have our linear combination
𝑠𝑠 = −6 
𝑡𝑡 = 7 

Recall Theorem 9.1.1:
If x|y and x|z, then x|(sy + tz) 
for any integers s and t.



Demo
Find 𝑠𝑠 and 𝑡𝑡 such that gcd 44, 96 = 𝑠𝑠 ⋅ 44 + 𝑡𝑡 ⋅ 96

 



Multiplicative Inverse (MMI)
The MMI of 𝒂𝒂 is an integer 𝒙𝒙 such that 𝒂𝒂𝒙𝒙 𝐦𝐦𝐦𝐦𝐠𝐠 𝒎𝒎 = 𝟏𝟏 where 𝑥𝑥 < 𝑚𝑚 − 1.

To find 𝑥𝑥, ask yourself "What number multiplied by 𝑎𝑎 will result in 1 mod 𝑚𝑚?"

Example:

What is the MMI of 5 under mod 7? 

5𝑥𝑥 mod 7 = 1 

What is 𝑥𝑥? Let's try a few numbers:

5 ⋅ 1 mod 7 = 5, so it is not 1 

5 ⋅ 2 mod 7 = 3, so it is not 2  

5 ⋅ 3 mod 7 = 1, it is 𝟑𝟑.  The MMI of 5 under mod 7 is 3.

Note: To have an MMI, 
𝑎𝑎 and 𝑚𝑚 must be 
relatively prime.

1
0

2
34

5

6



MMI
Modular Multiplicative Inverse or Inverse Mod m or Multiplicative Inverse Mod m

2𝑥𝑥 ≡ 1 (mod 17) 

2𝑥𝑥 ≡17 1 

What multiple of 2 is one more than a multiple of 17?

9

9 is an MMI of 2 under mod 17

The MMI exists only if 𝑎𝑎 and 𝑚𝑚 are coprime.

MMIs are used in 
cryptography, especially 

the RSA Algorithm

𝑎𝑎𝑥𝑥 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚 = 1 
𝑎𝑎𝑥𝑥 ≡𝑚𝑚1 
𝑎𝑎𝑥𝑥 ≡ 1 (𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚) 



What is the MMI of:

3 (mod 7)     (What multiple of 3 is one more than a multiple of 7?)

3 ⋅ 𝑥𝑥 ≡7 1 

𝑥𝑥 = 5, so 5 is the MMI for 3 (mod 7).



Use Extended Euclidean to find MMI
If gcd 𝑥𝑥, 𝑛𝑛 ≠ 1, then there is no MMI.

If 𝑥𝑥 and 𝑛𝑛 are relatively prime, then gcd 𝑥𝑥, 𝑛𝑛 = 1, so we can find a linear combination 1 = 𝑠𝑠𝑥𝑥 + 𝑡𝑡𝑛𝑛.

𝑠𝑠 is the MMI of 𝑥𝑥 under mod 𝑛𝑛 because 𝑠𝑠𝑥𝑥 − 1 = −𝑡𝑡𝑛𝑛, so 𝑠𝑠𝑥𝑥 is 1 more than a multiple of 𝑛𝑛.

Example

Find gcd(5,7)



Use the Extended Euclidean Algorithm to 
find the MMI of 31 mod 43.

1. Use Euclidean Algorithm to find 
gcd(31,43)

2. Use Extended Euclidean Algorithm to 
solve 1 = 31𝑥𝑥 +  43𝑦𝑦.

3. Now 𝑥𝑥 is the MMI of 31 mod 43. (And 𝑦𝑦 is 
the MMI of 43 mod 31)



Use the Extended Euclidean Algorithm to find 
the inverse of 𝑥𝑥 mod 𝑛𝑛 for each of the following:

x=35, n=48

x=25, n=84

gcd(𝑥𝑥,𝑛𝑛)  =  𝑠𝑠𝑥𝑥 +  𝑡𝑡𝑛𝑛 

If gcd 𝑥𝑥,𝑛𝑛 = 1, then solve for 𝑠𝑠 and 𝑡𝑡:

 1 = 𝑠𝑠𝑥𝑥 + 𝑡𝑡𝑛𝑛 

𝑠𝑠 is the inverse of 𝑥𝑥 mod 𝑛𝑛 11
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