FEuclidean Algorithm



Prime Number Theorem

There are an infinite number of primes
The Prime Number Theorem:

Helps us estimate how many prime numbers are in the range 2 through x.

We define m(x) as the number of primes from 2 to x.

Then,
. m(x) \ _ m(x)\ 1 X
Jm <x/1n(x)> =1 (T) " In(x) () In(x)

The ratio of prime numbers between 2 and x to all numbers between 2 and x approaches 1/ln x as x
approaches infinity.



Prime Number Theorem

The ratio of primes to all numbers is approximately 1/In(x). Example:
How many primes are there
(ﬂ(x)> 1 between 2 and 1000?
x ) In(x)
X 1000

= ~ 145
. In(x) In(1000)
As x gets larger, the ratio gets smaller.

In other words, primes become more sparse the larger the range.

If we choose a random number between 2 and x, the likelihood that it 1s
prime 1s 1/In(x).

X
In(x)

The number of primes in the range 2 through x is approximately n(x) =

In Python, In(x) is math.log(x)


https://colab.research.google.com/github/byui-cse/cse280-course-notebooks/blob/main/examples/examples-w09-primes.ipynb

Greatest Common Divisor (GCD)

- Greatest Common Divisor — Largest integer that divides both numbers (i.e., the largest factor of both
numbers)

What is the GCD of 24 and 36? Using Prime Factorizations:

Factors of 24: 1, 2, 3, 4, 6, 8,|12] 24 24: 2331
Factors of 36: 1, 2, 3, 4, 9,12/ 18, 36 36: 2232

Smallest exponents: 2231 =12

What is the GCD of 6 and 32? Using Prime Factorizations:
. olal
Factors of 6: 1}2,|3, 6 22 ;5:‘30
Factors of 32: 1] 2,14, 8, 16, 32 '

Smallest exponents: 2139 =2

Rosen, Kenneth. Discrete Mathematics and Its Applications, 7th Edition. McGraw-Hill, 2012



GCD Theorem

Computing GCD of two integers 1s computationally difficult for large numbers. Why?

Finding the prime factorization of a large number is difficult. We only know how to do it

using brute force.

We have a shortcut!

We can reduce the problem of finding the GCD of large numbers by using mod.

Let x and y be two positive integers where x # 0.

Then ged(x,y) = gcd(x, y mod x).

In other words, the GCD of two integers is the
same if we reduce one of those numbers using
mod of the other number.

And we can keep going until one of the numbers is
reduced to O.

Example:

gcd(6,32) = 2
gcd(6,32 mod 6) = gcd(6,2) = 2

gcd(6 mod 2,2) = gcd(0,2) = 2




Recall the Division Theorem

- Dividing an integer by a positive integer produces a quotient g and remainder r.
- Let n and d be integers.

- Then there exist unique integers g and r where 0 < r < d such thatn =qd + r



Euclidean GCD Algorithm

Find gcd(97,11)
Find the GCD of two numbers:

Usingn =qd + . Find gcd(97,11)

1. Divide larger number n by smaller
number d to get g and r.

1.97 = (8)11 +9
2. Shift d and r to be the new n and d. 2.11=1)9+ 2
3. Divide n by d to get a new q and r. 3.9=(4)2+41

4.  Repeat until the remainder is 0. The last
non-zero remainder is the GCD.

4.2=(2)1+0




- Find the gecd(91, 287)

Find gcd(97,11)

1.97 = (8)11 + 9
2.11 = (1)9 + 2
3.9=(4)2+1

4.2=(2)1+0




Find gcd(21, 56)




Recall Theorem 9.1.1:

EXtended EuCIidean Algorithm If x|y and x|z, then x| (sy + tz)

for any integers s and t.

The GCD of x and y can be expressed as a linear combination of x and y:

gcd(x,y) = sx + ty for some s and t. By the GCD Theorem, gcd(x,y) = gcd(x, y mod x).

gcd(44,38) = gcd(44 mod 38,38) = gcd(6,38) = gcd(38 mod 6,6) = gcd(2,6) = gcd(6 mod 2,2) = gcd(0,2) = 2
gcd(44,38) = 2. We can express this as a linear combination, 2 =s-44 4+t - 38.

2=38mod6=38—( )-6=38—(6)6

2=38 —6-6

6=44mod38=144 —( )-38=44—(1)-38
6=44 —1-38

2=38 —-6-(44—-1-38) substitute (44 — 1 - 38) for 6

2=38—6-44+6-38 simplify
2=—6-44+7-38 We have our linear combination
s =—6

t=7



Demo

Find s and t such that gcd(44,96) =s-44 +t-96




Multiplicative Inverse (MMI)

The MMI of a is an integer x such that ax mod m = 1 where x <m — 1. Note: To have an MMI,

a and m must be

To find x, ask yourself "What number multiplied by a will result in 1 mod m?" relatively prime.

Example:

What 1s the MMI of 5 under mod 7?

S5xmod7 =1

What is x? Let's try a few numbers:
5-1mod7 =5, soi1ti1s not 1
5-2mod 7 = 3, so 1t 1s not 2 5 2
5-3mod7 =1, 1t1s 3. The MMI of 5 under mod 7 1s 3. 4 3



MMI

Modular Multiplicative Inverse or Inverse Mod m or Multiplicative Inverse Mod m

MMIs are used in

2x =1 (mod 17) cryptography, especially
the RSA Algorithm

2x =171

What multiple of 2 is one more than a multiple of 17?

9 1s an MMI of 2 under mod 17

The MMI exists only if a and m are coprime.




What is the MMI of:

3 (mod7) (What multiple of 3 is one more than a multiple of 7?)

3-x=5,1

x =5, so 51s the MMI for 3 (mod 7).



Use Extended Euclidean to find MMI

If gcd(x,n) # 1, then there is no MMI.
If x and n are relatively prime, then gcd(x,n) = 1, so we can find a linear combination 1 = sx + tn.

s 1s the MMI of x under mod n because sx — 1 = —tn, so sx 1s 1 more than a multiple of n.

%ui(q,'b

Example
E‘bl;dm" A l%”'%“: Exbnded £ uclidean Mgarh‘lmi
find ng(5’7) = 7-5(1)
7=501) + 2 1=1-
' /// L= 2(2)
f—/
2 = () + O
1= 5-2(1-5)
= 5-1(7)+2(5)
1= 3(6) -2(7)
7

Disthe nverse of Smid 7, 35S milT= |
—21isthe inverse of 7 mid &

~24+523, Zisthemvese of Tmod§
3T md 5=1



Use the Extended Euclidean Algorithm to
find the MMI of 31 mod 43.

1. Use Euclidean Algorithm to find
ocd(31,43)

2. Use Extended Euclidean Algorithm to
solve 1 = 31x + 43y.

3. Now x 1s the MMI of 31 mod 43. (And y is
the MMI of 43 mod 31)

%Ld( g} -73
Bucldean Nqﬂ‘l‘“‘“: Exbded Euclidean Algorithm:
1=7-5(1
7;:/-5%)/4—/2‘ | = 5-2(2)
=20 £ |1 |e9ed
v
2 = ) + O
1= 5-2(7-5)
| =5-127)+2(8)
1= 3(5) -2(7)
/

Sisthe inverse of Smd 7, 35 miT= |
—2 s the inverse of 7 mid &

~245=3, Zisthamiese of Tmid §
37 md =1

1= X3 +y-H>

Flhd mml( of Zlmodqg. g;shmma_pg.lmadﬂﬁ

9CA(;£, y3): :

y3=31()+ 12 =13

- - - =3(-1%2)

(= iy + = JT =7
?1.:*7('“'; i.—. 7-4 ) sub 2
7= s(n+2 | = 5-2(2) 1=5-2(7-5 i
52 200 +[T]&9<4 [ =3(5) -2(7)  simplify
z_; j(z) =& 1=302-7-U7) subS

1=3(12) —5(3) simplfy
= 3(:11-5(3'-201}) Sub 7
= 13(12) - 5(3!) Simplify

1= 13(43-30) -S(3) sub12
|=13(43) ~18 (31) simpliFy

|= -180) + 13(43)
4
=18 is the MMl of 31 me) 43
-3+ 43=2¢
25 is the mm of 31 mod 43
3"25Mo¢|'-|3:_-_;



gcd(x,n) = sx + tn

Use the Extended Euclidean Algorithm to find
the inverse of x mod n for each of the following: If gcd(x,n) = 1, then solve for s and ¢:
1=sx+tn

=35, n=48 11 . .
% n s 1s the inverse of x mod n

x=25, n=84 37



Ml.h..rh, oF £35S mﬁ 4% -

(ﬁu,l(??, "HF) i

4g =3s-1 + 17

pa=gy 2 ]

Tr e R

9’:'4-2 o !

S&h‘,c ,':: S'gg— '?"_t'q.g

f’;: L{(IS‘ {"35_
9= 35- 2.1%

Ll == Vi
o= e 2’“{
SMES‘IH\{'“-{Z"
= 9 2-(13-1-9)
= §-~2«134+2-9
1= #3.9-2-13

1= 3-(25- 213 = 2:13
1= 335 - 6x3 — 2

| = 335 —B-13

|z 335 — % (4g- 1:35)
= 335 - 3:4S + .35

gz Mle3s ~ 8-4%

Jug s

The Tnvese 2F 35 mo

1

nvere sF 25 mod 54 :
(_‘J;_J (2‘5_,- ‘5"'()

gel=2c-2 +
257= -1 + 7
Q= 7-1 T
=

1= Se25 + € - %Y
?:34,3'25‘
g = s
2= F=iy,
I= 7 —2+3

= =3
= 7——3.‘5 +3-7
=z 4.7 -39

izt (g~ 29 ) EER
(2 Y28 —% =i

s y.2¢ —11-9

5= q.zfuif(‘S‘f-'Z»'ZS-)
J = Y28 — (g4 arages

[z 3726 = llens

3-1 ' Iwnr!mep Q;MIJ g4

2537 med 39 =1
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