Trees

Background

• Arthur Cayley, English mathematician, discovered trees in 1857 when he needed a way to count chemical compounds

- Data compression
- Modeling games/procedures/decisions/relationships
- Filesystem hierarch
- Evaluating mathematical expressions

Trees vs Graphs

Both are composed of vertices and edges

• Tree: Only one path from one vertex to any other vertex

• Graph: More than one path between vertices

Tree Terminology

Free Tree

Rooted Tree

Root

Level

Height

Parent

Child

Ancestor

Descendant

Leaf

Internal vertex

Sibling

Subtree

Review:

What does it mean if two graphs are isomorphic?

With a partner, complete Additional Exercises:

14.1.2

A Few Tree Applications

Binary Search Trees

• Fast searching. Optimize **time**.

Huffman Trees

- Data compression. Optimize **space**.
- Binary tree, but not a binary **search** tree.
- Used to create an optimal prefix code

Game trees

Mathematical expressions

Consider a text file that consists of 1000 a's.

How much space would it take to store this file if we use standard ASCII or UTF-8, which each use 1-byte (8-bits) to store the letter "a"?

Can you think of a way to store this file in a way that would save space?

What is the compression ratio?

$$\frac{\text{orignal - compressed}}{\text{original}} \qquad \frac{1000 - 119}{1000} = 0.88 = 88\%$$

ZIP compression

What about a file that consists of 1000 completely random bytes?

q2KVZRbqRiflgI56Es4plUeWoWBk w2b892Ss5JWSJAk5SPaIksHucUo GFMszZ2pqBB ...

Can you think of a way to store this file in a way that would save space?

Why don't we save any space by compressing it?

ZIP compression

Fixed-length Encoding

Encode means "represent"

•	How many bits would it take to encode the letters of the
	English alphabet? (the minimum number of bits)

- There are 26 letters
- 4 bits (2⁴) will only give 16 possible encodings
- Need at least 5 bits
- But that gives $2^5 = 32$ different possibilities. Waste of bits
- There are six combinations of bits that are unused
- This is a **fixed-length** encoding. Each symbol/letter uses five bits.
- Wastes space and time.
- Can we find a coding scheme that uses fewer bits?

/		
A	00 00 000	0 0
В	00 0 001	1 1
\mathbf{C}	00 00 010	2 2
D	0000011	3 3
	•••••	
Ø	11 10 001	14 25
B nu	sed11 11 010	26
Q	17011	27
R	11100	28
S	1 1 101	29
T	11 110	30
•••	171111	31

Variable-length Encoding

- Instead of using a fixed number of bits to represent each letter/symbol, we can use bit strings of different lengths to encode letters.
- For efficiency, letters that occur more frequently should be represented using shorter bit strings. Letters that are rarely used should be represented using longer bit strings.

• Example:

The letters **e**, **a**, **t** are more common than x and z.

What if we represent the letter **e** with 0, **a** with 1, and **t** with 01?

Then the bit string 0101 could represent eat, tea, eaea, or tt.

e	0
a	1
t	01

Prefix Codes

- One way to make sure no bit string corresponds to more than one sequence of letters is to encode letters in such a way that the bit string for a letter **never occurs as the first part of a bit string for another letter**.
- This is called a Prefix Code.
- Example

To represent the letters \mathbf{e} , \mathbf{a} , \mathbf{t} using a prefix code, we could choose 0 for \mathbf{e} , 10 for \mathbf{a} , and 11 for \mathbf{t} .

The bitstring 10110 represents the word **ate**. There is no other possible interpretation.

Now we can decode or recover a word from a bitstring without ambiguity.

e	0
a	10
t	11

Prefix Codes

- · A prefix code can be represented using a binary tree.
- Leaves represent the characters/symbols we need to represent
- Edges represent the encoding bits. A left edge is a 0 and a right edge is a 1.
- The bit string used to encode a symbol is the sequence of edges to reach the symbol.
- Because this is a tree, the path to get to any leaf is unique.
- The sequence of bits formed by the path is a prefix code.

е	0	
a	10	
t	110	
n	1110	
\mathbf{s}	1111	

11111011100 S A N E

Prefix Code Examples

- Huffman codes
- Country calling codes
- ISBN country and publisher assignments
- Machine language instruction sets

Where is Huffman Coding used?

- JPEG
- <u>MP3</u>
- DEFLATE algorithm (Huffman Coding is combined with LZ77 compression)
 - zip, gzip, 7-Zip, C zlib library, PuTTY, ...
 - PNG files

Huffman Trees

- Used to produce a **Huffman Coding**, which is a prefix code.
- It is not only a prefix code, but it is a prefix code using the fewest number of bits possible.
- Fundamental algorithm in data compression.
- Uses a binary tree.
- Store more frequently seen symbols closer to root.
- Label the links rather than the nodes. Left link is 0, right link is 1.
- Symbols we want to represent are stored at the leaves.
- Each symbol is encoded into a unique bitstring by following the structure of the tree.

Compression Ratio

- How do we know how much space/time we are saving by using a variable-length encoding instead of a fixed-length encoding?
- Calculate the **compression ratio!**

Compression Ratio

f: bits per symbol for fixed length encoding

v: average bits per symbol with variable length encoding

$$\frac{f-v}{f} \cdot 100$$

Example: Create a Huffman Tree for the string "MISSISSIPPI"

- 1. List out the counts
- 2. Go through the algorithm:
 - 1. List symbols in a priority queue sorted by count (smallest count first)
 - 2. Combine first two symbols (M and P) into a tree and add to the proper place in the queue
 - 3. Repeat again, combining first two items in queue into a tree (M, P, and I) and adding back to the queue.
 - 4. Continue to repeat until only one item is on the queue. This is the completed tree.
- 3. Extract the encoding for each letter:

100	01:	10011	L001:	110	110	111	21 bits
Μ	I	SSI	SSI	Р	Р	I	

Example: Create a Huffman Tree for the string "MISSISSIPPI"

Calculate the compression ratio.

How many bits per letter would it take for a fixed-length encoding?

8	8		Letter	encoding
2 bits per let	ter		\mathbf{M}	00
1			P	01
0010111110	111110010110	22 bits	I	10
MISSI	SSIPPI		\mathbf{S}	11

How many bits on average with this Huffman encoding?

S:
$$1 \text{ bits * } 4 \text{ letters = } 4$$

Total:
$$3+6+8+4=21$$

Average bits per letter: 21/11 = 1.91

Comp	pression	ratio:

$$\frac{f-v}{f} \cdot 100 \qquad \qquad f = 2$$

$$v = 1.92$$

$$\frac{2-1.91}{2} \cdot 100 = \mathbf{4.5}\%$$

Letter	Count
\mathbf{M}	1
P	2
I	4
S	4
total	11

Letter	encoding
\mathbf{M}	100
P	101
I	11
\mathbf{S}	0

Example: Create a Huffman Tree for the string "MISSISSIPPI"

0010111110111110	016	311 0
MISSISSI	P	o I
	4.0	
1001100110011101	101	111
M I SSI SSI P	P	I

Fixed

Variable

Letter	fixed	variable
\mathbf{M}	00	100
P	01	101
I	10	11
\mathbf{S}	11	0

Try it:

Create a Huffman tree and Huffman encoding for "AARDVARK"

	count	encoding
D	1	1111
K	1	1110
V	1	110
R	2	10
A	3	0

001011111100101110 AAR D V AR K

How many bits for fixed length encoding?

How many bits for variable length encoding?

Compression ratio?

Suggested Additional Exercises

14.2.2

14.2.3

Huffman Practical Application

Python Example implementing Huffman Tree