
Trees

Background
• Arthur Cayley, English mathematician, discovered trees in 1857

when he needed a way to count chemical compounds

• Fast Searching

• Data compression

• Modeling games/procedures/decisions/relationships

• Filesystem hierarch

• Evaluating mathematical expressions

Rosen, Kenneth. Discrete Mathematics and Its Applications, 7th Edition. McGraw-Hill, 2012
Neff, Rick, and Gopalakrishnan, Ganesh. First Three Odds Double Halve Divide Reciprocate. CRC Press, 2021

Trees vs Graphs
• Both are composed of vertices and edges

• Tree: Only one path from one vertex to any other vertex

• Graph: More than one path between vertices

Graphic from: https://medium.com/swlh/making-data-trees-in-python-3a3ceb050cfd

Tree Terminology
Free Tree

Rooted Tree

Root

Level

Height

Parent

Child

Ancestor

Descendant

Leaf

Internal vertex

Sibling

Subtree

a

d

c b e g

f
a

dc

b e

gf

e

gf

Review:

What does it mean if two graphs are isomorphic?

With a partner, complete Additional Exercises:

14.1.2

A Few Tree Applications
Binary Search Trees

 Fast searching. Optimize time.

Huffman Trees
 Data compression. Optimize space.
 Binary tree, but not a binary search tree.
 Used to create an optimal prefix code

Game trees

Mathematical expressions

aaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa
...

Consider a text file that consists of 1000 a's.

How much space would it take to store this file
if we use standard ASCII or UTF-8, which each
use 1-byte (8-bits) to store the letter "a"?

Can you think of a way to store this file in a
way that would save space?

ZIP compression

What is the compression ratio?

orignal − compressed
original

 1000 − 119
1000 = 0.88 = 𝟖𝟖𝟖𝟖𝟖

q2KVZRbqRiflgI56Es4plUeWoWBk
w2b892Ss5JWSJAk5SPaIksHucUo
GFMszZ2pqBB
...

What about a file that consists of 1000
completely random bytes?

Can you think of a way to store this file in a
way that would save space?

ZIP compression

Why don't we save any space by compressing it?

Fixed-length Encoding

• How many bits would it take to encode the letters of the
English alphabet? (the minimum number of bits)
 There are 26 letters
 4 bits (24) will only give 16 possible encodings
 Need at least 5 bits
 But that gives 25 = 32 different possibilities. Waste of bits
 There are six combinations of bits that are unused

• This is a fixed-length encoding. Each symbol/letter uses
five bits.

• Wastes space and time.

• Can we find a coding scheme that uses fewer bits?

A 00000 0
B 00001 1
C 00010 2
D 00011 3
... ...
Z 11001 25
Unused 11010 26
Unused 11011 27
Unused 11100 28
Unused 11101 29
Unused 11110 30
Unused 11111 31

A 0000 0
B 0001 1
C 0010 2
D 0011 3
... ...
O 1110 14
P 1111 15
Q ? ?
R ? ?
S ? ?
T ? ?
... ? ?

Rosen, Kenneth. Discrete Mathematics and Its Applications, 7th Edition. McGraw-Hill, 2012

Encode means
"represent"

Variable-length Encoding

• Instead of using a fixed number of bits to represent each letter/symbol, we can
use bit strings of different lengths to encode letters.

• For efficiency, letters that occur more frequently should be represented using
shorter bit strings. Letters that are rarely used should be represented using
longer bit strings.

• Example:
The letters e, a, t are more common than x and z.

What if we represent the letter e with 0, a with 1, and t with 01?

Then the bit string 0101 could represent eat, tea, eaea, or tt.

Rosen, Kenneth. Discrete Mathematics and Its Applications, 7th Edition. McGraw-Hill, 2012

e 0
a 1
t 01

Prefix Codes

• One way to make sure no bit string corresponds to more than one
sequence of letters is to encode letters in such a way that the bit
string for a letter never occurs as the first part of a bit string for
another letter.

• This is called a Prefix Code.

• Example

 To represent the letters e, a, t using a prefix code, we could choose
0 for e, 10 for a, and 11 for t.

 The bitstring 10110 represents the word ate. There is no other
possible interpretation.

 Now we can decode or recover a word from a bitstring without
ambiguity.

e 0
a 10
t 11

Rosen, Kenneth. Discrete Mathematics and Its Applications, 7th Edition. McGraw-Hill, 2012

Prefix Codes

• A prefix code can be represented using a binary tree.

• Leaves represent the characters/symbols we need to
represent

• Edges represent the encoding bits. A left edge is a 0
and a right edge is a 1.

• The bit string used to encode a symbol is the
sequence of edges to reach the symbol.

• Because this is a tree, the path to get to any leaf is
unique.

• The sequence of bits formed by the path is a prefix
code.

e 0
a 10
t 110
n 1110
s 1111

e

a

t

n s

0

0

0

0

1

1

1

111111011100
S A N E

Rosen, Kenneth. Discrete Mathematics and Its Applications, 7th Edition. McGraw-Hill, 2012

Prefix Code Examples

• Huffman codes

• Country calling codes

• ISBN country and publisher assignments

• Machine language instruction sets

https://en.wikipedia.org/wiki/List_of_country_calling_codes

Where is Huffman Coding used?
• JPEG

• MP3

• DEFLATE algorithm (Huffman Coding is combined with LZ77 compression)
 zip, gzip, 7-Zip, C zlib library, PuTTY, ...
 PNG files

https://en.wikipedia.org/wiki/JPEG#Entropy_coding
https://arstechnica.com/features/2007/10/the-audiofile-understanding-mp3-compression/3/
https://en.wikipedia.org/wiki/Deflate

Huffman Trees
• Used to produce a Huffman Coding, which is a prefix code.

• It is not only a prefix code, but it is a prefix code using the fewest
number of bits possible.

• Fundamental algorithm in data compression.

• Uses a binary tree.

• Store more frequently seen symbols closer to root.

• Label the links rather than the nodes. Left link is 0, right link is 1.

• Symbols we want to represent are stored at the leaves.

• Each symbol is encoded into a unique bitstring by following the
structure of the tree.

e

a

t

n s

0

0

0

0

1

1

1

1

Compression Ratio
• How do we know how much space/time we are saving by using a variable-length encoding instead of a

fixed-length encoding?

• Calculate the compression ratio!

Compression Ratio

𝑓𝑓: bits per symbol for fixed length encoding

𝑣𝑣: average bits per symbol with variable length encoding

𝑓𝑓−𝑣𝑣
𝑓𝑓
⋅ 100

1. List out the counts

2. Go through the algorithm:

 1. List symbols in a priority queue sorted by
count (smallest count first)

 2. Combine first two symbols (M and P) into a
tree and add to the proper place in the
queue

 3. Repeat again, combining first two items in
queue into a tree (M, P, and I) and adding
back to the queue.

 4. Continue to repeat until only one item is on
the queue. This is the completed tree.

3. Extract the encoding for each letter:

 100110011001110110111 21 bits

Example: Create a Huffman Tree for the string "MISSISSIPPI"

Letter Count
M 1
P 2
I 4
S 4

Letter encoding
M 100
P 101
I 11
S 0

M I SSI SSI P P I

Calculate the compression ratio.

How many bits per letter would it take for a fixed-
length encoding?

2 bits per letter

0010111110111110010110 22 bits

How many bits on average with this Huffman
encoding?

M: 3 bits * 1 letter = 3

P: 3 bits * 2 letters = 6

I: 2 bits * 4 letters = 8

S: 1 bits * 4 letters = 4

Total: 3+6+8+4 = 21

Average bits per letter: 21/11 = 1.91

Example: Create a Huffman Tree for the string "MISSISSIPPI"

Letter Count
M 1
P 2
I 4
S 4

total 11

Letter encoding
M 100
P 101
I 11
S 0

Compression ratio:

𝑓𝑓−𝑣𝑣
𝑓𝑓
⋅ 100

2 − 1.91
2 ⋅ 100 = 𝟒𝟒.𝟓𝟓𝟖

𝑓𝑓 = 2
𝑣𝑣 = 1.91

Letter encoding

M 00

P 01

I 10

S 11M I S S I S S I P P I

Example: Create a Huffman Tree for the string "MISSISSIPPI"

Letter fixed variable
M 00 100
P 01 101
I 10 11
S 11 0

M I S S I S S I P P I
0010111110111110010110

100110011001110110111
M I SSI SSI P P I

Fixed

Variable

Try it:

Create a Huffman tree and Huffman encoding for "AARDVARK"

count
D 1
K 1
V 1
R 2
A 3

encoding
1111
1110
110
10
0

AAR D V AR K
001011111100101110

How many bits for fixed length encoding?

How many bits for variable length encoding?

Compression ratio?

Suggested Additional Exercises

14.2.2

14.2.3

Huffman Practical Application
Python Example implementing Huffman Tree

https://colab.research.google.com/github/byui-cse/cse280-course-notebooks/blob/main/examples/examples-w07-huffman.ipynb

	Trees
	Background
	Trees vs Graphs
	Tree Terminology
	Slide Number 7
	A Few Tree Applications
	Slide Number 10
	Slide Number 11
	Fixed-length Encoding
	Variable-length Encoding
	Prefix Codes
	Prefix Codes
	Prefix Code Examples
	Where is Huffman Coding used?
	Huffman Trees
	Compression Ratio
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Huffman Practical Application

