
Graphs



Trees vs Graphs

• Both are composed of vertices/nodes and edges/links.

• Tree: A tree is an undirected graph that is connected and has no cycles. A tree is a type 
of graph.

• Graph: Can have cycles (but doesn't have to). Does not have to be connected. 

Graphic from: https://medium.com/swlh/making-data-trees-in-python-3a3ceb050cfd



Applications of Graphs

• Used to model relationships
 Can represent any relation (recall reflexive, symmetric, antisymmetric, transitive)

• Solve problems in many disciplines

• Graph theory started when Euler solved the Seven Bridges of Konigsberg problem

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


Applications of Graphs
• Relationships between people

 Friends in a social networking site

 Marriages

 Genealogical relationships

 Students/Professors



Applications of Graphs
• Scheduling problems (example: How to fit the greatest number of classes into a given schedule)

• Countries that share a border

• What is the fewest number of distinct frequencies needed among 10 radio stations so there is no 
interference?

• Track winners in a tournament

• Roadmaps

• Can a given electrical circuit be implemented on a planar circuit board?

• Model computer networks

• And on and on...



Simple Graph definition:

𝐺𝐺 = (𝑉𝑉,𝐸𝐸) where 𝑉𝑉 is a nonempty set of vertices and 𝐸𝐸 (the edges) is a 
set of two-element sets (i.e., unordered pairs) of elements of 𝑉𝑉

Example:

𝐺𝐺 = 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 , 𝐴𝐴,𝐵𝐵 , 𝐴𝐴,𝐶𝐶 , 𝐵𝐵,𝐶𝐶 , 𝐶𝐶,𝐷𝐷  

 

A graph 𝐺𝐺 is an ordered pair consisting of a nonempty set of Vertices 
(Nodes) and a set of Edges (Links)

It can be helpful to draw it, but 
this is not necessary to be 
considered a graph

These both represent the same 
graph



Simple Graphs:

• No self-loops. Only one edge between any two vertices.

• Model symmetric relations

• Edges are undirected (i.e., edges represent a symmetric relation)

• Any pair of objects can be related or not related

• We can use a simple graph to model anything with symmetric relations

Examples:
Countries that share a border or do not share a border
Land masses connected by a bridge
Cities connected by a road
Family relationships (marriage, sibling, cousin, etc)
People that speak the same language or don't speak the same language
Classes that are taught at the same time or not taught at the same time
...

Recall symmetric relations:

∀𝑎𝑎∀𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏 → 𝑏𝑏𝑎𝑎𝑎𝑎  



Some Terms

Let G be an undirected graph and let k be an edge of G 
that is {u, v}.

u and v are adjacent
u and v are neighbors
u and v are connected
Edge k is incident with nodes u and v
Edge k connects u and v
Nodes u and v are the endpoints of edge k

U V
k



More terms

Directed vs undirected

Node/vertex

Link/edge

Degree of a vertex

Total degree

Loop

Regular graph

D-regular graph

a

d

cb

e

a

d

c

b

a

d

cb

e



Degree Sequence

A sequence of the degrees of every node in a graph, listed in non-
increasing order (highest to lowest)

What is the degree sequence of this graph?

[5,3,2,2,2]



Subgraphs
A graph 𝐻𝐻 = 𝑉𝑉𝐻𝐻 ,𝐸𝐸𝐻𝐻  is a subgraph of graph 𝐺𝐺 = (𝑉𝑉𝐺𝐺 ,𝐸𝐸𝐺𝐺) if 𝑉𝑉𝐻𝐻 ⊆ 𝑉𝑉𝐺𝐺 and 𝐸𝐸𝐻𝐻 ⊆ 𝐸𝐸𝐺𝐺. 

Is H a subset of G?

a

d

cb

e

a

d

cb

H G



Subgraphs
A graph 𝐻𝐻 = 𝑉𝑉𝐻𝐻 ,𝐸𝐸𝐻𝐻  is a subgraph of graph 𝐺𝐺 = (𝑉𝑉𝐺𝐺 ,𝐸𝐸𝐺𝐺) if 𝑉𝑉𝐻𝐻 ⊆ 𝑉𝑉𝐺𝐺 and 𝐸𝐸𝐻𝐻 ⊆ 𝐸𝐸𝐺𝐺. 

What about now?

a

d

cb

e

a

d

cb

H Ge



Subgraphs
Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), a subgraph of 𝐺𝐺 is any graph 𝐻𝐻 = (𝑂𝑂,𝑃𝑃) where 𝑂𝑂 ⊆ 𝑉𝑉 and P ⊆ 𝐸𝐸.

 

Which of these are subgraphs of 𝐺𝐺1?

𝐺𝐺2 and 𝐺𝐺3 are both subgraphs of 𝐺𝐺1. 
𝐺𝐺4 is NOT a subgraph of 𝐺𝐺1 because the link {𝑐𝑐, 𝑓𝑓} is not a link in 𝐺𝐺1

Levin, Oscar. Discrete Mathematics, An Open Introduction, 3rd Edition. 2021



Directed Graphs (Digraphs)
• Arbitrary binary relations (not necessarily symmetric)

• Edges have direction. In other words, edges are ordered pairs.

𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) 

𝑉𝑉 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒} 

𝐸𝐸 =  {(𝑎𝑎, 𝑏𝑏), (𝑎𝑎, 𝑒𝑒), (𝑏𝑏, 𝑐𝑐), (𝑐𝑐, 𝑐𝑐), (𝑐𝑐, 𝑑𝑑), (𝑐𝑐, 𝑒𝑒), (𝑑𝑑, 𝑎𝑎)} 

Hunter, David J. Essentials of Discrete Mathematics, 3rd Edition. Jones & Bartlett Learning 2017



Multigraph
• There may be more than one link between a pair of adjacent nodes



Pseudograph

• One or more nodes is adjacent to itself (loops)



Complete Graph

Every pair of vertices is connected by an edge. 

All possible edges are in the graph.

Every node in the graph is adjacent to every 
other node in the graph.

Denoted by 𝐾𝐾𝑛𝑛 

Also called a clique of size n.



Handshaking Theorem
If we know the degrees of all the vertices in an undirected graph, we can find the number of edges.

Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be an undirected graph. Then,

�
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 = 2 ⋅ 𝐸𝐸

  

The sum of the degrees of each vertex is twice the number of edges

Think about it this way:
Each edge must have two vertices. Therefore, the sum of the degrees of the vertices is twice the number of edges.



Handshaking Theorem
Example:

How many edges are in the graph with the following degree sequence?

[4,4,4,4,3,3,2,2] 

4 + 4 + 4 + 4 + 3 + 3 + 2 + 2 = 26

26
2

= 𝟏𝟏𝟏𝟏 edges

Count them. Is it true?

�
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 = 2 ⋅ 𝐸𝐸



Handshaking Theorem
Example:

Is it possible for 7 people in a room to each shake hands with 
exactly 5 other people?

Turn it into a graph problem. 

There are 7 vertices representing the 7 people. An edge between 
vertices represents a handshake. If each person shakes hands 
with exactly 5 other people, then each vertex has a degree of 5.

The sum of the degrees is

5 + 5 + 5 + 5 + 5 + 5 + 5 = 7 ∗ 5 =  35 

That would mean there are 35
2

= 17.5 edges. That is not possible.

�
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 = 2 ⋅ 𝐸𝐸



Handshaking Theorem
Try it:

Among a group of 5 people, is it possible for everyone to be friends with exactly 2 of the people in the 
group?

What about with exactly 3 of the people in the group?

Levin, Oscar. Discrete Mathematics, An Open Introduction, 3rd Edition. 2021

Yes. Using a graph of 5 vertices, there are 2 edges per vertex. 
There are 2∗5

2
= 5 edges. It is possible. 

No. There are 5∗3
2

= 7.5 edges. This is not possible.

�
𝑣𝑣∈𝑉𝑉

deg 𝑣𝑣 = 2 ⋅ 𝐸𝐸



Additional Exercises

13.1.1

13.1.3



Adjacency List
Represents the relationship between vertices

s a, b
a g,c,d
b d
g e
c e
d f
e t
f t
t



Adjacency Matrix

S A B C D E F G T

S 1 1

A 1 1 1

B 1

C 1

D 1

E 1

F 1

G 1

T

Represent the relationship between nodes



Try It
Create an adjacency matrix for this graph

1 2 3 4 5 6

1 1 1 1

2 1 1 1

3 1 1

4 1 1 1

5 1 1 1

6 1

What do you notice about the symmetry of 
this undirected graph?



Additional Exercises

13.2.1

13.2.2

13.2.3 (if time)



Graph Isomorphisms
Two graphs 𝐺𝐺1 and 𝐺𝐺2 are isomorphic if we can find a way to map the vertex sets of each graph such that 
there is an edge between two vertices in 𝐺𝐺1 if and only if there is an edge between the corresponding 
two vertices in 𝐺𝐺2.

Another way to think about it:  Two graphs are 
isomorphic if the vertices can be relabeled so that 
the graphs are identical.

𝑓𝑓:𝑉𝑉1 → 𝑉𝑉2 = 𝑎𝑎,𝑤𝑤 , 𝑑𝑑, 𝑥𝑥 , 𝑐𝑐, 𝑧𝑧 , 𝑏𝑏,𝑦𝑦  
a

c

b

d

𝐺𝐺1
w

z y

x

𝐺𝐺2

𝑓𝑓 is an isomorphism from 𝐺𝐺1 to 𝐺𝐺2. 

In other words, we need to find a bijection function 𝑓𝑓: V1 → V2 such that for every 𝑥𝑥, 𝑦𝑦 ∈ 𝑉𝑉1, then 
𝑥𝑥, 𝑦𝑦 ∈ 𝐸𝐸1 if and only if 𝑓𝑓 𝑥𝑥 , 𝑓𝑓 𝑦𝑦 ∈ 𝐸𝐸2. 



Graph Isomorphisms
Some graph properties are preserved under isomorphism.

If two graphs are isomorphic, then both have the same:

• Vertex degree

• Degree sequence

• Anything related to the structure of the graph rather 
than the labels on the vertices/edges. a

c

b

d

𝐺𝐺1
w

z y

x

𝐺𝐺2



Additional Exercises:

13.3.1

13.3.2



Walks
Graphs are made up of:

Vertices: ID, MT, WY, etc.
Edges: (ID,MT), (NV,ID), etc.

We represent a walk, trail, or path as a sequence of edges or as a sequence of vertices. 

A trail is a sequence in which no edge occurs more than once.

A circuit is a closed sequence in which no edge occurs more than once.

A path is a trail that does not repeat vertices (which also means it does not repeat edges).

A cycle is a circuit in which no vertices are repeated, except the starting/ending vertex

 Example:

 A path from NV to WY:

 As a sequence of Vertices: [NV, UT, WY]

 As a sequence of Edges: [(NV,UT), (UT,WY)] 



Circuit vs Cycle
A circuit is a trail from a vertex back to itself, with no repeated edges.

[(NV, ID), (ID, MT), (MT, WY), (WY, ID), (ID, UT), (UT, AZ), (AZ, NV)]

[NV, ID, MT, WY, ID, UT, AZ, NV]

A cycle is a path from a vertex back to itself, with no repeated vertices.
 
[(ID, MT), (MT, WY), (WY, CO), (CO, UT), (UT, AZ), (AZ, NV), (NV, ID)]

[ID, MT, WY, CO, UT, AZ, NV, ID]



Graph Connectivity
k-vertex connectivity: The minimum number of vertices to remove so the graph is no longer connected.

k-edge connectivity: The minimum number of edges to remove so the graph is no longer connected.

What is the vertex connectivity and edge connectivity of these graphs?

1-vertex connected
1-edge connected

1-vertex connected
2-edge connected



Graph Connectivity
Additional exercises:

13.5.2



Euler Circuits
An Euler circuit is a circuit that contains every edge and every vertex. 

No edges are repeated.

Seven Bridges of Königsberg
Can you find an Euler circuit in this graph?

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


Euler Circuits
What are some examples of graphs in which we would want to visit every edge once and only once?

 Plowing roads (vertices are intersections and roads are edges)

 Mail delivery



If an undirected graph G has an Euler circuit, then G is connected and every vertex in G has an even degree.

If a graph has a vertex with an odd degree, then the graph cannot have an Euler circuit.

If an undirected graph G is connected and every vertex in G has an even degree, then G has an Euler circuit.

Try to find an Euler circuit in this graph:

Euler Circuits

a

d

cb

e

Start at a. 

If we start at a, we must end at a 
because it is a circuit. 

But if we leave a, then come back to a, 
there is still one more edge we haven't 
traversed.

If we traverse that last edge, we are 
not longer ending at a, so it is not a 
circuit.

An undirected graph G 
has an Euler circuit if 
and only if G is 
connected and every 
vertex in G has even 
degree.

A circuit has no repeated 
edges.



Finding a circuit in a graph
All vertices must have even degree.

Find a vertex w, that is not an isolated vertex.

Select any edge {w, x} incident to w. (Since w is not isolated, 
there is always at least one such edge.)

Current trail T := ⟨w, x⟩
last := x

While there is an edge {last, y} that has not been used in T:
Add y to the end of T
last := y

a

dc

b

f

e

Example:

𝑇𝑇 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑓𝑓, 𝑎𝑎) 



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e

C = (a, b, c, a)



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e

C = (a, b, c, a)

C' = (a, d, e, a)



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e

C = (a, b, c, a)

C' = (a, d, e, a)
C = (a, d, e, a, b, c, a)



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e

C = (a, d, e, a, b, c, a)



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e

C = (a, d, e, a, b, c, a)

C' = (b, d, c, e, b)



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e

C = (a, d, e, a, b, c, a)

C' = (b, d, c, e, b)

C = (a, d, e, a, b, d, c, e, b, c, a)



Finding an Euler Circuit in a graph
Find a Euler Circuit by tracing the algorithm in 
on the following graph:

Prerequisites:
• Is the graph connected?
• Do all vertices have an even degree?
• Find any circuit in graph 𝐺𝐺 and call it 𝐶𝐶

Procedure:
1. Remove all edges in 𝐶𝐶 from 𝐺𝐺. Remove any 

isolated vertices and call the new graph 𝐺𝐺𝐺.
2. Find a vertex 𝑤𝑤 that is in 𝐺𝐺𝐺 and 𝐶𝐶.
3. Find a circuit in 𝐺𝐺𝐺 that begins and ends with 𝑤𝑤. 

Call this circuit 𝐶𝐶𝐺.
4. Combine 𝐶𝐶 and 𝐶𝐶𝐺. Start with any vertex 𝑣𝑣 in 𝐶𝐶 

and follow the edges in 𝐶𝐶 until 𝑤𝑤 is reached. 
Then follow the edges in 𝐶𝐶𝐺 back to 𝑤𝑤 and the 
rest of the edges in 𝐶𝐶 back to 𝑣𝑣. Call this new 
circuit 𝐶𝐶 for the next iteration.

5. Repeat until all edges are in 𝐶𝐶.

a

d

cb

e

C = (a, d, e, a, b, d, c, e, b, c, a)



With a partner, do Additional Exercises

13.6.1 a, b, c



Hamiltonian Cycles
A Hamiltonian cycle is a cycle that includes every vertex in the graph (but not necessarily every edge).

A Hamiltonian path is a path that contains every vertex in the graph.

Hard to find efficiently. Brute force is the only known approach.

How would we find a Hamiltonian Path using brute force?

List every permutation of the orderings of the vertices and check each one to see whether it is a path. 

We can sometimes prove a graph does or does not have a Hamiltonian cycle.

 Any graph containing a node with degree 1 does not have a Hamiltonian cycle.

 Any 𝐾𝐾 graph 𝐾𝐾3 or above does have a Hamiltonian cycle.

A cycle has no repeated 
edges or vertices.



Hamiltonian Cycles
What are some situations in which this would be useful?

 UPS delivery. Stops are the vertices and edges are the roads
 (Don't need to visit every edge, but we do need to visit every vertex)

 Traveling Salesman. The salesman wants to visit every city and get back home.



With a partner:

Do additional exercise 13.7.1 and 13.7.2



Bipartite Graph
• The graph consists of two sub-graphs. Each element of each subgraph has adjacent nodes ONLY in the 

other sub-graph



Bipartite Graphs
• Can be divided into two sets of vertices such that none of the vertices in either set are connected by an 

edge

Example:

Bipartite Not Bipartite



Planar Graphs

• A graph that can be drawn without lines crossing

Planar? Planar?

Note these are the same graph, just drawn differently



Planar Graphs

Example:

Is it possible to connect three houses to three utilities (e.g., electricity, fiber, gas) 
without the lines crossing?

Can you draw 𝐾𝐾3,3 as a planar graph?

No, 𝐾𝐾3,3 is not planar. 

Levin, Oscar. Discrete Mathematics, An Open Introduction, 3rd Edition. 2021



Coloring Graphs

Mapmakers in the fictional land of Euleria have 
drawn the borders of the various dukedoms of the 
land. 

To make the map pretty, they wish to color each 
region. Adjacent regions must be colored differently, 
but it is perfectly fine to color two distant regions 
with the same color. 

What is the fewest colors the mapmakers can use 
and still accomplish this task?

Levin, Oscar. Discrete Mathematics, An Open Introduction, 3rd Edition. 2021



Coloring Graphs
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drawn the borders of the various dukedoms of the 
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Coloring Graphs
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Coloring Graphs

Levin, Oscar. Discrete Mathematics, An Open Introduction, 3rd Edition. 2021
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Let's color the nodes using the greedy algorithm,
in alphabetical order.



Coloring Graphs

The Four Color Theorem (proved in 1976), states 
that if a graph 𝐺𝐺 is planar, then its regions can be 
colored using 4 or fewer colors.

The current best proof requires computers to check 
633 reducible configurations....not an easy proof.

Levin, Oscar. Discrete Mathematics, An Open Introduction, 3rd Edition. 2021



Additional exercises

13.9.1


	Graphs
	Trees vs Graphs
	Applications of Graphs
	Applications of Graphs
	Applications of Graphs
	Slide Number 7
	Slide Number 8
	Some Terms
	More terms
	Degree Sequence
	Subgraphs
	Subgraphs
	Subgraphs
	Directed Graphs (Digraphs)
	Multigraph
	Pseudograph
	Complete Graph
	Handshaking Theorem
	Handshaking Theorem
	Handshaking Theorem
	Handshaking Theorem
	Slide Number 23
	Adjacency List
	Adjacency Matrix
	Try It
	Slide Number 27
	Graph Isomorphisms
	Graph Isomorphisms
	Slide Number 30
	Walks
	Circuit vs Cycle
	Graph Connectivity
	Graph Connectivity
	Euler Circuits
	Euler Circuits
	Euler Circuits
	Finding a circuit in a graph
	Finding an Euler Circuit in a graph
	Finding an Euler Circuit in a graph
	Finding an Euler Circuit in a graph
	Finding an Euler Circuit in a graph
	Finding an Euler Circuit in a graph
	Finding an Euler Circuit in a graph
	Finding an Euler Circuit in a graph
	Finding an Euler Circuit in a graph
	Slide Number 47
	Hamiltonian Cycles
	Hamiltonian Cycles
	Slide Number 50
	Bipartite Graph
	Bipartite Graphs
	Planar Graphs
	Planar Graphs
	Coloring Graphs
	Coloring Graphs
	Coloring Graphs
	Coloring Graphs
	Coloring Graphs
	Slide Number 60

