
97

Extreme Programming and its Development Practices

Radmila Juric
South Bank University Business School, 103 Borough Road, London SEI OAA, UK
Tel(+44) (0) 20-78 15-7888, Fax (+44) (0) 20-78 15-7793, E-mail: juricr@,sbu.ac.uk

Abstract: Extreme Programming (XP) has attracted our attention through its fierce denial of many of
our well-accepted software engineering practices which we consider today as a sound approach to the
development of intensive software systems. XP has been declared to be a new way of software
development: a lightweight methodology, which is efficient, low-risk, flexible, predictable, scientific,
and distinguishable from any other methodology. In the core of the XP practices are programming
activities, with strong emphasis on oral communications, automated tests, pair programming, story-
telling culture and collective code-ownership at any time in the XP project.. This paper gives an
overview of XP practices and raises some serious concerns regarding their role in conceptual
modelling and code generation; which directly affects software architecture solutions. The paper also
tackles similarities between Rational Unified Process (RUP) and XP, which have lately been very
often juxtaposed by software developers.

Keywords: XP, RUP, 00, Analysis, Design, SE

1. Introduction

A software development process, which guarantees to build a software product or enhance an
existing one is expected to offer effective guidelines and capture the best practices of software
engineering (SE) disciplines in order to deliver an adequate solution, reduce risks and increase the
predictability of software intensive systems. The majority of SE practices are centred today on object
oriented (00) technology and new standards in the format of the Unified Modelling Language (UML)
(OMG, 1999) (Booch et a1.,1998). It has been designed to provide modelling constructs suitable for
any project. any system and any development process. Various methodologies and frameworks have
emerged recently (Jacobson et al., 1999) and many of them incorporate the UML elements and have
elaborated them towards issues that every SE practice is expected to address (Juric, 1998):

(a) The coverage of a project and system life cycle and its role within a particular workflow,
(b) The set of rules that represent the philosophy/practices of the methodology/frameworks,
(c) Fully described deliverables and their employment within different models of the system.

XP came to light within the last two years as an answer to all the problems we still experience when
delivering software solutions. XP attracted everybody's attention with its fierce denial of many of our
well-accepted SE practices, the courageous approach to them and unusual delivery of all the issues
mentioned in (a)-(c) above.

This paper represents an overview of XP philosophy regarding its development practices, their
evolution and employment within the XP lifecycle.. At the time of writing there were only a few
sources available where one could learn XP (Beck, 1999), (OTUG, 2000), (X P , 2000) and almost non
existent examples of XP principles which had been put into practice (Beck et al., 1998).
Consequently, the paper represents solely the author's interpretation of XP practices with no attempts
to reject them, despite many criticisms and concerns. This helps us to keep an open mind towards
these new trends in SE and new answers to our dogmatic aGproaches to the development of software
intensive systems.

The paper is organised as follows: Section 2 describes what XP and its values, principles and
practices. Section 3 gives the author's overview of the XP philosophy and raises concerns regarding
the core of XP practices and its role in conceptual modelling and code generation. Section 3 gives a

22"' Int. Conf. lnformation Technology lnterfaces /TI 2000, June 13-16, 2000, Pula, Croatia

mailto:juricr@,sbu.ac.uk

short overview of similarities and contradiction between RUP and XP, which have lately been very
often juxtaposed by software developers.

2. What is XP

XP is declared to be a new way of developing software: a lightweight methodoloa which IS
efficient, low-risk, flexible, predictable, scientific.. . in brief distinguishable from any other
methodology. (Beck, 1999). Furthermore, XP is defined as a discipline of software development
practices: it strictly prescribes activities you need to complete if you want to claim that you apply XP.
It is designed for smaller projects and teams of two to ten programmers, which result in efficient
testing and running of given solutions in a fraction of a day. Its incremental planning approach and
concrete and continuing feedback from short cycles of the software development allow an
evolutionary design process that lasts as long as its system. There is strong emphasis on oral
communications and automated tests that monitor progress of the software development, allowing the
system to evolve and detect anomalies very early. Above all, XP claims to offer a flexible schedule of
the implementation of the system’s functionality that actively supports changeable business needs. In
short, XP promises to reduce project risks, achieve adoption of constantly changing business
requirementheeds and improve productivity throughout the life of the system - all at the same time.
This sounds over enthusiastic: are we witnessing a birth of a ‘silver bullet’ which brings answers to all
problems that the SE community has experienced in the last 30 years? We will not answer to the
question until XP proves itself in practice, but it is easy to see that almost all XP practices are not new
but are re-scheduled within the development process and interwoven to the greatest possible degree.

2.1. XP and Risks Involved in the Software Development Process

XP addresses risks at all levels of the software development process, which requires communication
of the XP discipline to programmers, managers and customers. XP project looks at problems/risks of
the development process itself and derives solutions that dictate a set of XP activities. Some examples
of risks are given in (Beck, 1999) which are addressed by XP through answers that derive solutions
immediately. For example, schedule slips are remedied by a set of iterative and short release cycles.
Within a release XP uses one-to-four-week iterations, and within one iteration XP plans one-to-three-
day tasks. X P also calls for implementing priority features first. All releases are chosen as a smallest
set of tasks that makes business sense. A comprehensive suite of test is re-run whenever a system .

suffers changes which ensures a flexibility and constant support of changeable requirements. A+

However. as XP shortens the release cycle, there is less change during the development of a single L~

release.

2.2. XP Values, Principles, Activities and Practices

XP uses values as the main criteria for a successful software solution. In other words, the XP values
serve as a guarantee, whch shows that an XP’s set of practices is taking the right direction. XP values
are:
Communications: XP employs practices that require communications, such as:

unit-testing (programmer-programmer, customer-programmer),
pair programming (programmer-programmer),
task estimation (programmer-manager, programmer-customer).

XP requires choosing the simplest task you could possibly work on.
XP requires feedback at different time-scale: minutes/days/months:

XP encourages the taking of drastic and unexpected measures/actions such as
throwing code away or braking tests that have already been running and fixing the
flaw .

Simplicity:
Feedback:

programmers give minute-bv-minute feedback on the state of the system,
customers are given immediate feedback on the quality of their stories,
‘’person who tracks progress” gives feedback if the project is running within a

predicted time-scale.
Colt rage:

22”‘ Int. Conf. lnformafion Technology lnterfaces IT/ 2000, June 13-16, 2000, Pula, Croatia

99

The XP values are distilled into concrete princjples, which determine XP practices. The XP basic
principles are
Rapid feedback:

Assume simplicity:
Incremental change:
Embracing change:
Quality work:

any learning on how best to design, implement and test the system must be
fed back in seconds/minutes, rather than monthdyears.
treat every problem as though it could be solved the simplest way possible.
solve any problem with a series of small changes that make a difference.
preserve most options while solving the most pressing problem.
you should enjoy your work: this is how you produce good software.

There are some other less central principles that can be found in (Beck, 1999) and all of them help us
decide what to do in a specific situation. The four XP values and those derived principles are a basis
for building a discipline of software development practices. However, before practices are identified,
XP gives a list of activities, which are derived from the XP principles. The four basic XP activities
are:
Coding: is XP basic activity: whether you draw diagrams that generate code or you type at the

browser, you are coding. Source codes should be used for everything: to communicate
solutions, describe algorithms, express tests ... etc.

Testing: is important: automated tests often test hnctionality, and non-hnctional requirements can
not be avoided (e.g. adherence of code to standards) are also important. Unit tests are written
by the programmers, in order to prove that programs work the way they are expected to.
Functional tests are written by customers to convince themselves that a system as a whole
works as it is expected to.

Listening: XP develops rules that encourage structured communication and discourages
communication that does not help: it is not simply enough to say “everybody should listen to
each other”.

Design: is part of the daily business of all programmers in XP in the midst of their coding. It is based
on the concept “that a change of one part of the system does not always require a change in
another part of the system!” In good design every piece of logic in the system has only one
home, it puts logic near the data it operates on and allows the extension of the system with
changes in only one place.

The set of guiding values and principles described above guide us as we choose the strategy for each
of these activities. The main XP job is to structure the activities in the light of the long list of XP
practices briefly listed below (no practice stands well on its own. It requires other practices to keep it
in balance) :

Planning game:
Small releases:
Metaphor:
Simple design:
Testing:
Refactoring: ’ restructures the system without changing its behaviour.
Pair programming:
Collective ownership:
Continuous integration: integrate and build the system many times a day.
40-hour week:
On-site customer:
Coding standards:

determines the scope and timing of the next release.
puts a simple system into production quickly.
guides all development through a simple shared story of the overall system.
the system should be designed as simply as possible at any moment.
is constantly undertaken for development to continue.

all production code is written by two programmers at one machine.
anyone can change any code anywhere at any time.

work no more than 40 hours a week as a rule.
must be available full-time.
emphasises communication throughout the code.

2.3. XP Strategies and Lifecycle

The implementation of XP should be based on the strategies of the XP project managcment where
almost all XP valfies, principles and practices are employed in order to deal with a particular strategy
For example. the Mnnngemcnr strntecEy that emerges from evaluatioduse of Accepted re~ponszhzlzfy,
Quality work. Incremental change, Local adoption. Travel light and Honest measuremeni principles

22nd Int. Conf. Information Technology Interfaces IT/ 2000, June 13-16, 2000, Pula, Croatia

100

will guide us towards decentralised decision making and leave managers with Planning game practice,
using metrics as the basic XP management tool. The Development strategy is a radically transformed
format of the traditional view of the development process. Its motto is that in XP all activities are
centred around programming, i.e. “everything you do in XP looks like you are doing programming”.
You start with Iteration planning (from the Planning strategy) and include practices such as Continuos
integration of written code, Collective (code) ownership and Pair programming, which ties the
development process together. All four XP values work towards the XP Design strategy, which
requires the simplest design that runs the current test suite. You also use principles such as Small
initial investment, Assume simplicity, Incremental change and Travel light, whch will result in gradual
design change, no extra design results, working on the simplest design we can imagine and removing
all unnecessary functionality

XP strategies are put into practice through a lifecycle of an “ideal” XP project. It consists of a short
initial development phase followed by a long-term simultaneous production support and refinement.

-

Exploration: prepare production, practice writing user stories, estimate and experiment with
technology and programming tasks.

Planning: run the planning game practice; agree the smallest set of stories to be completed.
Iterahons to First Release: produce a set of functional test cases that should run at the end of

iterations.
Productionizing: you need one-week iterations, certify that the software is ready for production;

implement a new test and tune the system.
Maintenance: simultaneously produce new functionality and keep existing system running, refactor if

necessary or migrate to a new technology; experiment with new architectural ideas.
Death: XP project ceases to exist; new functionality do not have to be added or can not be

delivered.

3. XP overview

XP approach to the software development process is polarised around the following issues:

o Application code in certain environments is so easy to change that we could abandon careful up-
fiont analysis and design activities.
Requirements that are highly changeable should be split into the simplest test cases withn a task ,

of a minimum complexity, which still has some business sense.
o The XP work is centred upon simple unit tests that are written before the production code is

written and run every time the new production code changes. Unit tests are done at the granularity
of the single method, i.e. at the smallest granularity possible, ensuring very small and fast iterative
cycles with immediate feedback. They also contribute towards overall functionality tests.
Code is written in programming-pairs: not a single line of the code can be written without the
attention of two programmers.
The code is written for particular written unit tests to be verified now and without anticipating any
potential changes. You work at any moment on implementing what you know is needed now and
not in the short-term future.

0 The code can not be duplicated: if the same code is found at two different places, they must be
combined. Refactoring will ensure that every method does not try to do more than it should.

0

0

The issues above are scattered across various XP principles and practices and are suggested to be
employed within an ‘ideal’ XP project lifecycle. In spite of suggesting some Exploration and
Planning phases, the first release of running tests happens very early within the XP project life cycle,
up-front in Productionizing, which still alloivs Refactoring and software to evolve but at a slower
pace. The emphasis is on the Maintenance phase where you exercise everything: from keeping your
current release running - however small it is - and incorporating new functionality by using the same
tight method of fast iterations of the smallest possible unit testing and coding. The nest three sections
n4I assess some of the issues mentioned above

22“‘ Int. Conf. Information Technology Interfaces IT/ 2000, June 13-16, 2000, Pula, Croatia

3.1. XP Early Production Coding vs. Up-front Conceptual.AModelling
,

XP encourages code production before having an overall investigation of all major system's use
cases and domain models. They are all needed in order to generate conceptual design and overall
implementation solution. We have learned throughout the last 4 decades that the best SE practices are
based on the up-front analysis and clearly specified conceptual models prior to any code production.
XP practices directly violate this principle i.e. it almost looks like XP denies all the values of high
level analysis and design activities which were prevalent in structured systems development lifecycles
as defined in (DeMarco, 1979) and some 00 methodologies (Jacobson et al., 1999), (Rumbaugh et al.,
199 1) However, XP shows some overlapping with the latest 00 approaches where the initial analysis
and investigation are not limited exclusively to up-front of all activities. In RUP (Jacobson et al.,
1999) all activities are happening in parallel throughout short iterative cycles, but an overall
understanding of key use cases and domain classes is advocated, before production coding takes place.
XP allows us to write simple unit tests and convert them into a production code without the complete
picture of the overall business domain problem. Thls could have the following implications:

(a) It could undermine the usefulness of unit testing before you understand the whole domain
problem. It might apply more refactoring in order to remove initial errors within firstlearly
releases.

(b) It ignores software architectural issues, which can not solely be enforced by eliminating duplicated
code or replacing it with the Metaphor practice as suggested in (Beck, 1999). Software
architecture as in (Shaw and Garlan, 1996) exhibits more than XP practices offer. It should
exercise for example how interchangeable software components comprise flexible software
systems where solutions might be given throughout distributed objects in C O M A environments
(Mom bray and Ruh, 1998).

Problem (b) is difficult to remedy without more precise explanations from XP propagators on what
Metaphor practice exactly is and how by asking for a metaphor we get an architecture that is easy to
communicate and collaborate. The goal of the Metaphor practice is to give everyone a coherent story
within which to work. However, this story can easily be refactored through the Contrnuous
Integratron practice of newly coded unit tests withn the running release. The question is: do we
continuously integrate by asking for a metaphor first, or does the integration itself dictate a single
overarching metaphor? The only guidelines that \ye have at the moment are that each XP practice
requires another XP practice to keep it in balance. We probably mix and match them according to our
experience and needs. Furthermore, XP claims that the final code found in the production is so
precisel! refactored and readable that it could s e n e as a software architecture model. However, it IS
more likely that XP code with extremely small methods using laboriously readable messages and
vanable names could rather contribute towards a design documentation, i.e. these two might be very
similar in X P projects and fall short of our expectations of software architecture. We could assume
that software architecture in XP projects could be traced through XP code documentation, coder's
individual knowledge of a particular code release and examples of hands-on mentoring during the
Mnzntennnce phase (or any other) using a clear Metaphor and culture of story-telling. Hence, software
architecture knowledge of XP projects is rather communicated and socialised than explicitly
documented

.

Problem. (a) resembles very exploited rapid prototyping activities, which have been used within
analysis stages of traditional software development in order to prove that a particular assumption or
even a particular design works. Regardless of the criticism that the rapid prototyping moves the
developmentkoding into an analysis stage of the system life cycle, it could successfully work with
incremental Land iterative steps that interchange analysis and overall architectural issues. Whenever
new requirements trigger new analysis, changes might be kept within an increment which dictates the
revision of the software architecture based upon the revision of major use cases, i.e. functionality of
the overall system. If we change the prototyped code itself at this level and update it to accommodate
new functionality, we will come very close to the XP Productionizing practice, assuming that the
simplest business domain has been prototyped initially and has escalated as new requirements arise.
Furthermore. the time we spend on analysing high level design and prototyping. XP would have

22-" Int. Conf:Information Technology Interfaces /TI 2000, June 13-16, 2000, Pula, Croatia

102

yielded a partially completed system probably at least equivalent to the prototype. However, rapid
prototypiiig has always been associated as a successful tool for refining user’s requirements under the
umbrella of system’s overall functionality, which XP unit tests simply are not.

3.2. Communications of XP Activities and Code Generation

Communications at any level/phase of the XP project seems to be the backbone of all XP practices.
You are required to program in pairs with your colleague in order to approach unit tests and code
production more dynamically and share someone else’s expertise/knowledge. The code is collectively
owned, no stricthndividual ownership exists, everyone takes responsibilities for the whole system, and
everyone can change any code anywhere. An on-site customer is a must and a valuable recipient of
numerous rapid feedbacks in unit-testing and task-estimations. The XP Communicahon value directly
influences Couruge/aggressiveness value where XP proved to favour both by placing the code
production into the heart of any XP project. All these issues above could raise the following
questions:

(a) Does this dissemination of knowledge/activities break down the barrier between
analyddesigner and coder/programmer?

(b) Do highly communicative XP environments move the management control of the overall
software production towards the programmer’s level?

The answer to both of these questions can not be given separately: each one influences the other.
Question (b) should not represent any problem if the XP practices operate under the stable umbrella of
software architectural issues as discussed in the previous section. If t h s were the case, any decision
about overall system functionality taken by a programmer could have been monitored and approved as
being withn the boundaries of agreed system’s functionality at a higher analysiddesign level. In other
words. n e expect that all decisions on changes of system’s functionality should be made solely by the
analystldesigner and not programmers/coders. However, the XP practices do exactly the opposite:
they encourage the progra”er.’s involvement at any stage of the software development process: from
requirements capture to code production, hence answers to both questions (a) and (b) above are
positive. We used to view this approach as a ‘recipe for disaster’. It was claimed that placing the
analystldesigner at the front end of software development activities, and isolating them from
programmers, is the only way of deriving acceptable software solutions. They are controlled by
captured requirements and system’s functionality and isolated at the logical level, whose design should
not be influenced by any of implementation decisions, i.e. coding solutions.

It seems that such a big division between XP and our old development practices regarding (a) and (b)
above is remedied in XP through : (i) highly communicative activities and the culture of pair
programming and story-telling at any stage of the XP project, (ii) constant, tight and rapid feedback
from any of the XP activities to anyone involved, (iii) customer’s involvement into unit tests and tasks
estimations which are happening constantly throughout the life of the XP project.

XP claims that analysis and design are part of every programmer’s every day work, whose experience,
skllls and programming decisions directly influence a system’s functionality through careful structure
of the Planning game principle and under a system’s Metaphor as a system’s model. The XP highly
communicative activities with rapid feedback definitively give assurances for successful
implementation of changeable system’s requirements and question (a) does not represent any threat to
XP pro-jects. However. question (b) could generate more obstacles and as long as the XP principles do
not address the issue of software architecture more explicitly, t h s will remain one of the XP project’s
biggest weaknesses

-

3.3.XP and RUP

XP came to light almost immediately after the SE communih embraced the UML as a standard in
the modelling of software intensive systems and when RUP was gaining popularity as a process,
\d~ich accommodates all UML modelling constructs. This has triggered fierce discussions among 00

22-” Int. Conf. lnformation Technology Interfaces IT/ 2000, June 13-16, 2000, Pula, Croatia

technology practitioners in order to address th,e applicability of XP and RUP through their similarities
and contradictions.

RUP is a generic process framework that can be specialized for any software system including
different application domains, types of organisations and project sizes. Its component-based approach
to software development is captured in use case driven, architecture centric and iterativehcremental
processes. RUP repeats a series of cycles, which contains four phases: inception, collaboration,
construction and transition. All phases comprise as many iterations as necessary to deliver various
releases. Each workflow: requirements, analysis, design, implementation and testing, is carried out in
almost every phase, hence a typical iteration goes through almost all workflow. RUP uses the UML
and summarises what we now like to see as the basic success of valuable expertise and skills needed
for the successful delivery of software solutions.

The strongest resemblance with XP could be in a highly iterative and incremental RUP approach
adopted when delivering releases for any of the phases of its lifecycle. Iterations in RUP refer to steps
in workflow and increments to growth of the final product. Each use case is transformed through
successive iterations into executable code. Whatever the similarity between XP and RUP incremental
approach is, they are undertaken under different circumstances and for slightly diverse purposes. The
issue of software architecture again becomes an obstacle in clearly judging how successfilly an XP
can deliver a solution, as already discussed in the previous two sections. Furthermore, we could
extend the problem towards the questions:

(a)
(b)

Looking at XP practices one sees that an “architecture” is simply a foldout of a code-centric approach,
i.e it is something which results from managing code dependencies and extensive code refactoring. In
RUP an “architecture” means that all aspects of the software development depend on the “use case
view”. i.e. the software development is driven by the archtecture which is an emergent property of the
writing of the deliverable software. These two approaches can not be juxtaposed.

Is a “good software architecture” important in the process of delivering software solutions?
Do we need strictly controlled iterative processes under the umbrella of a “stable architecture
dnven solution”?

The ansiver to question (a) above should then probably be negative if we think about the quality of
software production in small projects where XP is highly applicable and possibly more efficient than
any other approach. These are cases where we do not think about the architectural issues very much
and could conform to and accept a very wise wording of Planning game practice under a Metaphor of
a system‘ model, instead of using the word “architecture“, as expected. In RUP “archtecture” is also
decided by the first few iterations during the inception and elaborating phases, which both involve
writing a fair amount of code. We could then say that in RUP coding does drive the “archtecture” to
a certain exTent as in XP. However, this is strictly controlled through iterations under the umbrella of
common hnctionality described in major use cases, whch should give us an assurance that the code
delivered stays within earlier agreed decisions on system’s finctionality that guide the development.

Consequently, the answer to question (b) above is probably positive if we talk about complex projects
where we could not rely on guidance from user stories and Planning game practices as advised in XP.
Th~s view advocates that programming should, extensively be guided by logical and technical system
architectures agreed earlier, before delivering any implementation solutions. In other words, the
architecture should result from the business domain model (e.g. use cases), it should be defined and
maintained by the project and not extracted from the perfectly refactored code.

XP practices and RUP framework could be merged by brave developers into a combined process of
RUP phases. where each iteration is conducted under some XP practices. This might ensure that the
code delivered is controlled by the architecture centric and use case view approach, but each iteration
exploits the highly communicative XP practice of pair programming, rapid feedback, shared code
ownership, and the culture of story telling to its maximum. This remains to be seen. .

22“’ Int. Conf. information Technology Interfaces /TI 2000, June 13-16, 2000, Pula, Croatia

104

4 ’ 4. Conclusions

This paper has attempted to raise serious concerns regarding XP’s courageous approach to the
software development process and its impact on software architecture solutions. However, the aim of
the paper has not been to dispute any values that XP might contribute towards SE practices due to their
relative immaturity, insufficient number of sources where one could learn how to use XP, and few
examples where XP is put into practice. Consequently, this paper does not reach any conclusions that
explicitly judge XP or state what the future of XP is. However, it is worthwhile mentioning that XP
represents the most avanf gurde and the most tempting approach to software development for decades,
which primarily draws our attention towards its denial of all sound SE principles that we adopted
throughout our last 4 decades of software development experiences.

References

Beck K. (1999) Extreme Programming Explained, Embrace Change, Addison Wesley
Beck K., et all (1998), Crysler Goes to Extreme, Case Study, http:Nwww.DistributedComputinv.com
Booch G, J. Rumbaugh, and I. Jacobson and (1998) “The Unified Modelling Language User Guide”,

De Marco. T. (1979) “Structured Analysis and System Specification”, Yourdon Press New York, US
Jacobson. I., G. Booch, and J. Rumbaugh, (1999), “The Unified Software Development Process”,

Juric, R. (1998) The UML Rules, in ACM Software Engineering Notes (SEN), Volume 23, Number 1, ,

Mowbray T.J. and W. A. Ruh (1998) “Inside C O M A Distributed Object Standards and

OMG (1999) UML version 1.3, http://www.omg.orq/uml/
OTUG discussion forum (2000), http://www.rational.com
Rumbaugh. J. , M. Blaha, W. Premerlani, F. Eddy and W. Lorensen (1991) “Object Oriented

Modelling and Design”, Prentice Hall International
Shaw M. and D. Garlan (1996) “Software Architecture, Perspectives on an Emerging Discipline”,

XP (2000). http://www.XPronramming.com, http://www.extremeurograming.ord

Addison Wesley

Addison Wesley

pp. 92-97

Applications”, Addison Wesley.

Prentice Hall

22’: Int. Conf. lnformation Technology lnterfaces /TI 2000, June 13-16, 2000, Pula, Croatia

http:Nwww.DistributedComputinv.com
http://www.omg.orq/uml
http://www.rational.com
http://www.XPronramming.com
http://www.extremeurograming.ord

